Abstract

We report a one-pot approach to prepare fluorescent gold nanoclusters (AuNCs) from HAuCl4 by simply using 11-mercaptoundecanoic acid (11-MUA) as a reducing and capping agent, in an aqueous solution of NaOH at room temperature. The as-prepared water-soluble AuNCs with average diameters of 1.8 ± 0.4 nm exhibit a unique fluorescence excitation at 285 nm, a maximum emission at 608 nm, and a quantum yield of 2.4%. We find that the fluorescence of 11-MUA-AuNCs can be quenched by several metal ions but selectively by Cr3+ ions when using EDTA as the masking agents for other metal ions. This phenomenon is further exploited as a “turn-off” fluorescent sensor for sensitive and selective detection of Cr3+ ions. Upon the quantitative addition of Cr3+ in the presence of EDTA, the fluorescence intensity quenches linearly within the range of 25 nM to 10 μM with high sensitivity (LOD = 26 nM, S/N = 3). Furthermore, the 11-MUA-AuNCs could be used to detect Cr6+ indirectly by using ascorbic acid to reduce Cr6+ into Cr3+ in aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.