Abstract

Water-soluble and non-aggregating gold nanoclusters (AuNCs) were obtained by modification of the AuNCs with dithiothreitol (DTT) and then coating them with carboxylated chitosan. This process remarkably enhances the dispersibility of DTT-coated AuNCs in water. The resulting AuNCs, on photoexcitation at 285nm, display strong red emission with a maximum at 650nm and a 23% quantum yield. Fluorescence is strongly and selectively suppressed in the presence of 6-mercaptopurine (6-MP). Photoluminescence drops linearly in the 0.1-100μM 6-MP concentration range, and the detection limit of this assay is 0.1μM. Other features of the modified AuNCs include a decay time of 8.56μs, a 365nm Stokes shift, good colloidal stability, ease of chemical modification, and low toxicity. Conceivably, these NCs may find a range of applications in biological imaging and optical sensing. Graphical abstract Highly fluorescent and water-soluble gold nanoclusters (AuNCs) were obtained by modification of the AuNCs with dithiothreitol (DTT) and then coating them with carboxylated chitosan (CC). The resulting CC/DTT-AuNCs were used for sensitive and selective detection of 6-mercaptopurine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.