Abstract

We theoretically investigate the possibility for a tetraneutron to exist as a low-energy resonance state. We explore a microscopic model based on the assumption that the tetraneutron can be treated as a compound system where $^3$n+n and $^2$n+$^2$n coupled cluster configurations coexist. The influence of the Pauli principle on the kinetic energy of the relative motion of the neutron clusters is shown to result in their attraction. The strength of such attraction is high enough to ensure the existence of a low-energy resonance in the tetraneutron, provided that the oscillator length is large enough.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call