Abstract

Many failures have been reported in gas turbine facilities owing to repeated startups and prolonged use of the turbines. In this study, the causes and mechanism of fatigue failure in the first blade of a gas turbine were analyzed using a finite element method to calculate the centrifugal force, bending force, and a modal analysis based on the stress-stiffening effect and harmonic response under the operating conditions. The results show that, fatigue damage was caused by the resonance conditions encountered, in which the first natural frequency declined along with an increase in the metal temperature of the blade. The position of the expected fatigue damage was shown to match the actual position of the cracking at the root area of the blade, which was on the concave side. In addition, the equivalence fatigue stress was observed to approach the fatigue limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call