Abstract

This paper presents the results of torsion fatigue of widely used bearing steels (through hardening with bainite, martensite heat treatments, and case hardened). An MTS torsion fatigue test rig (TFTR) was modified with custom mechanical grips and used to evaluate torsional fatigue life and failure mechanism of bearing steel specimen. Tests were conducted on the TFTR to determine the ultimate strength in shear (Sus) and stress cycle (S-N) results. Evaluation of the fatigue specimens in the high cycle regime indicates shear driven crack initiation followed by normal stress driven propagation, resulting in a helical crack pattern. A 3D finite element model was then developed to investigate fatigue damage in torsion specimen and replicate the observed fatigue failure mechanism for crack initiation and propagation. In the numerical model, continuum damage mechanics (CDM) were employed in a randomly generated 3D Voronoi tessellated mesh of the specimen to provide unstructured, nonplanar, interelement, and inter/transgranular paths for fatigue damage accumulation and crack evolution as observed in micrographs of specimen. Additionally, a new damage evolution procedure was implemented to capture the change in fatigue failure mechanism from shear to normal stress assisted crack growth. The progression of fatigue failure and the stress-life results obtained from the fatigue damage model are in good agreement with the experimental results. The fatigue damage model was also used to assess the influence of topological microstructure randomness accompanied by material inhomogeneity and defects on fatigue life dispersion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call