Abstract

This work presents the development of an ultrahigh-speed digital holography instrument that can perform volumetric measurements at a rate of up to 100 million frames per second. The system is based on an Ultra 8 camera that uses a single custom-built image intensifier with a segmented photocathode that can gate eight different imaging regions down to 10 ns. An in-line interferometric scheme is used to capture the deformation of a water drop as it is photoablated from irradiation by a 1064 nm wavelength pulsed laser beam. After a digital holographic video is captured, wavefront reconstruction is used to focus on discrete depth planes enabling the user to observe different 3-dimensional features of the drop as the field-of-view is scanned plane-by-plane. The reconstructions are detwinned and corrected for parallax and alignment error before a final image at any given depth is produced. We provide one-to-one comparisons between conventional focused imaging and digital holography to demonstrate the 3-dimensional visualization capabilities of the instrument with particular regard to dynamic events occurring at nanosecond time intervals for future applications to hypersonic flows and other short and ultrashort duration events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call