Abstract

The effect of the highest excited states on the yield of photoproducts that are usually formed upon excitation of the first singlet electronic state of polyatomic molecules is discussed. It is shown that the excitation of molecular objects through the highest singlet states can, in some cases, increase the yield of reaction products. This allows one to estimate the probabilities of reactions from the corresponding states. The consideration concerns a wide range of primary photoreactions, including the electronic density redistribution (the intramolecular electron transfer) in the excited state, the protolytic reactions, the intramolecular proton transfer (the phototautomerization), the hydrogen bond formation, and the formation of excimers and exciplexes. The relations obtained are used to analyze the experimental fluorescence spectra of 3-hydroxyflavone solutions, excited by electromagnetic radiation with different wavelengths in the region of the S 1, S 2, and S 3 absorption bands. The analysis fulfilled shows that the highest singlet states play an important role in the formation of tautomers in 3-hydroxyflavone due to the intramolecular proton transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.