Abstract
The steady-state monochromatic excitation of a luminophore that has fluorescing products is considered. The effect of dynamic quenching of highest excited states on the fluorescence of singlet states under its excitation via singlet S1 and Sn (n ≥ 2) states is discussed. It is shown that the use of the method of fluorescence dynamic quenching by foreign impurities opens new possibilities for studying photoreactions that proceed via Sn singlet states. A large number of primary photoprocesses are considered which include the electron density redistribution (the internal electron transfer) in the excited state, protolytic reactions, intramolecular proton transfer (phototautomerization), hydrogen bonding, and formation of excimers and exciplexes. It is shown that, upon dynamic quenching, the bimolecular quenching constant of an excited level depends on the amount of thermal energy released in the luminophore before the occurrence of the light emission event. Based on the experimental measurements of the fluorescence spectra at different quencher contents, the calculation of the Stern-Volmer constant for reaction products is considered in detail. It is shown that this constant can be most reliably determined from the dependence of the fluorescence intensity ratio of the initial reagents and the quencher product rather than from the dependence of the fluorescence intensity of the products on the concentration of the quencher. The relations determined are used in analysis of the experimental fluorescence spectra of solutions of 3-hydroxyflavone excited by radiation with different wavelengths lying in the range of the S1 and S2 absorption bands. The temperature behavior of the Stern-Volmer constant for different fluorescence bands of 3-hydroxyflavone is considered. It is shown that, if these constants for the normal and tautomeric forms are correctly determined, their temperature dependences are similar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.