Abstract

In-field analysis (e.g., clinical and diagnostics) using nanostructured porous silicon (PSi) for label-free optical biosensing has been hindered so far by insufficient sensitivity of PSi biosensors. Here we report on a label-free PSi interferometric aptasensor able to specifically detect tumor necrosis factor alpha (TNFα, a protein biomarker of inflammation and sepsis) at concentration down to 3.0 nM with signal-to-noise ratio (S/N) of 10.6 and detection limit (DL) of 200 pM. This represents a 10 000-fold improvement with respect to direct (i.e., nonamplified) label-free PSi biosensors and pushes PSi biosensors close to the most sensitive optical and label-free transduction techniques, e.g., surface plasmon resonance (SPR) for which a lowest DL of 100 pM in aptasensing has been reported. A factor 1000 in improvement is achieved by introducing a novel signal-processing technique for the optical readout of PSi interferometers, namely, interferogram average over wavelength (IAW) reflectance spectroscopy. The...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.