Abstract

This chapter discusses various approaches to designing integrated circuits for digital signal processing (DSP) applications. Modern DSP systems are often well suited to very large scale implementation (VLSI). Indeed, they are often technically feasible or economically viable only if implemented using VLSI technologies. The large investment necessary to design a new integrated circuit can only be justified when the number of circuits to be manufactured is large, or when the necessary performance requirements are so high that they cannot be met with any other technology. Advances in integrated circuit technology also open new areas for DSP techniques, such as intelligent sensors, robot vision, and automation, while simultaneously providing a basis for continuing advancements in traditional signal processing areas, such as speech, music, radar, sonar, audio, video, and communications. Integrated circuit technology has had a profound effect on the cost, performance, and reliability of electronic circuits. Manufacturing cost is almost independent of the complexity of the system. The cost per integrated circuit (unit cost) for large-volume applications using large chips is dominated by the cost of the chip, while for small and medium-size chips the package cost tends to dominate. The whole system cost for small-volume applications is often dominated by the development cost. Many DSP systems (for example, mobile phones) are produced in very large numbers and require high-performance circuits with respect to throughput and power consumption. Therefore, the design of DSP integrated circuits is a challenging topic for both system and VLSI designers. DSP integrated circuits are also of economic importance to the chip manufacturers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call