Abstract

We report on 1.3 μm single-photon emission based on a self-assembled strain-coupled bilayer of InAs quantum dots (QDs) embedded in a micropillar Bragg cavity at temperature of liquid nitrogen or even as high as 120 K. The obtained single-photon flux into the first lens of the collection optics is 4.2 × 106 and 3.3 × 106/s at 82 and 120 K, respectively, corresponding to a second-order correlation function at zero delay times of 0.27(2) and 0.28(3). This work reports on the significant effect of the micropillar cavity-related enhancement of QD emission and demonstrates an opportunity to employ telecom band single-photon emitters at liquid nitrogen or even higher temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.