Abstract

1-(3-C-Ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd, TAS-106) is a novel antitumor ribonucleoside that inhibits RNA polymerase. In the present study, we investigated the cellular and molecular interactions between TAS-106 and cisplatin (CDDP) in vitro using A549 human lung cancer cells and the in vivo antitumor effect of combined treatment using OCC-1 and LX-1 human tumor xenografts. The treatment effects were determined by evaluating cytotoxicity, the cell cycle distribution, apoptosis induction and the expression of checkpoint-associated proteins. In vitro, the combination of TAS-106 and CDDP synergistically inhibited the growth of A549 cells, as determined using isobologram analysis. TAS-106 potently inhibited the expression of Chk1 protein and the phosphorylation of Chk1 and Chk2. Moreover, based on the inhibition of checkpoint-associated protein, TAS-106 abrogated the CDDP-induced S- and G2M-checkpoints and induced apoptosis in A549 cells. In vivo, TAS-106 alone showed antitumor activity; however, its combination with CDDP significantly enhanced the growth inhibition of OCC-1 and LX-1 tumors. Moreover, combination therapy with TAS-106 and CDDP in the OCC-1 xenograft model resulted in significant life-prolongation. These findings provide a rationale for combination chemotherapy using TAS-106 and CDDP in clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call