Abstract

We present two prototypes of a gigabit transceiver ASIC, GBCR1 and GBCR2, both designed in a 65-nm CMOS technology for the ATLAS Inner Tracker Pixel Detector readout upgrade.The first prototype, GBCR1, has four upstream receiver channels and one downstream transmitter channel with pre-emphasis. Each upstream channel receives the data at 5.12 Gbps through a 5 m AWG34 Twinax cable from an ASIC driver located on the pixel module and restores the signal from the high frequency loss due to the low mass cable. The signal is retimed by a recovered clock before it is sent to the optical transmitter VTRx+. The downstream driver is designed to transmit the 2.56 Gbps signal from lpGBT to the electronics on the pixel module over the same cable. The peak–peak jitter (throughout the paper jitter is always peak–peak unless specified) of the restored signal is 35.4 ps at the output of GBCR1, and 138 ps for the downstream channel at the cable ends. GBCR1 consumes 318 mW and is tested.The second prototype, GBCR2, has seven upstream channels and two downstream channels. Each upstream channel works at 1.28 Gbps to recover the data directly from the RD53B ASIC through a 1 m custom FLEX cable followed by a 6 m AWG34 Twinax cable. The equalized signal of each upstream channel is retimed by an input 1.28 GHz phase programmable clock. Compared with the signal at the FLEX input, the additional jitter of the equalized signal is about 80 ps when the retiming logic is off. When the retiming logic is on, the jitter is 50 ps at GBCR2 output, assuming the 1.28 GHz retiming clock is from lpGBT. The downstream is designed to transmit the 160 Mbps signal from lpGBT through the same cable connection to RD53B and the jitter is about 157 ps at the cable ends. GBCR2 consumes about 150 mW when the retiming logic is off. This design was submitted in November 2019.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.