Abstract

Matrix vesicles are extracellular organelles involved in mineral formation that are regulated by 1alpha,25(OH)(2)D(3). Prior studies have shown that protein kinase C (PKC) activity is involved in mediating the effects of 1alpha,25(OH)(2)D(3) in both matrix vesicles and plasma membranes. Here, we examined the regulation of matrix vesicle PKC by 1alpha,25(OH)(2)D(3) during biogenesis and after deposition in the matrix. When growth zone costochondral chondrocytes were treated for 9 min with 1alpha,25(OH)(2)D(3), PKCzeta in matrix vesicles was inhibited, while PKCalpha in plasma membranes was increased. In contrast, after treatment for 12 or 24 h, PKCzeta in matrix vesicles was increased, while PKCalpha in plasma membranes was unchanged. The effect of 1alpha,25(OH)(2)D(3) was stereospecific and metabolite-specific. Monensin blocked the increase in matrix vesicle PKC after 24 h, suggesting the secosteroid-regulated packaging of PKC. In addition, the 1alpha,25(OH)(2)D(3) membrane vitamin D receptor (1,25-mVDR) was involved, since a specific antibody blocked the 1alpha,25(OH)(2)D(3)-dependent changes in PKC after both long and short treatment times. In contrast, antibodies to annexin II had no effect, and there was no evidence for the presence of the nuclear VDR on Western blots. To investigate the signaling pathways involved in regulating matrix vesicle PKC activity after biosynthesis, matrix vesicles were isolated and then treated for 9 min with 1alpha,25(OH)(2)D(3) in the presence and absence of specific inhibitors. Inhibition of phosphatidylinositol-phospholipase C, phospholipase D, or G(i)/G(s) had no effect. However, inhibition of G(q) blocked the effect of 1alpha,25(OH)(2)D(3). The rapid effect of 1alpha,25(OH)(2)D(3) also involved the 1,25-mVDR. Moreover, arachidonic acid was found to stimulate PKC when added directly to isolated matrix vesicles. These results indicate that matrix vesicle PKC is regulated by 1alpha,25(OH)(2)D(3) at three levels: 1) during matrix vesicle biogenesis; 2) through direct action on the membrane; and 3) through production of other factors such as arachidonic acid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.