Abstract

1,25-(OH) 2D 3 (1,25) exerts its effects on growth plate chondrocytes through classical vitamin D (VDR) receptor-dependent mechanisms, resulting in mineralization of the extracellular matrix. Recent studies have shown that membrane-mediated mechanisms are involved as well. 1,25 targets cells in the prehypertrophic and upper hypertrophic zones of the costochondral cartilage growth plate (GC cells), resulting in increased specific activity of alkaline phosphatase (ALP), phospholipase A 2 (PLA 2), and matrix metalloproteinases (MMPs). At the cellular level, 1,25 action results in rapid changes in arachidonic acid (AA) release and re-incorporation, alterations in membrane fluidity and Ca ion flux, and increased prostaglandin E 1 and E 2 (PGE 2) production. Protein kinase C (PKC) is activated in a phospholipase C (PLC) dependent-mechanism, due in part to the increased production of diacylglycerol (DAG). In addition, AA acts directly on the cell to increase PKC specific activity. AA also provides a substrate for cyclooxygenase (COX), resulting in PGE 2 production. 1,25 mediates its effects through COX-1, the constitutive enzyme, but not COX-2, the inducible enzyme. Time course studies using specific inhibitors of COX-1 show that AA stimulates PKC activity and PKC then stimulates PGE 2 production. PGE 2 acts as a mediator of 1,25 action on the cells, also stimulating PKC activity. The rapid effects of 1,25 on PKC are nongenomic, occurring within 3 min and reaching maximal activation by 9 min. It promotes translocation of PKC to the plasma membrane. When 1,25 is incubated directly with isolated plasma membranes, PKCα is stimulated although PKCζ is also present. In contrast, when isolated matrix vesicles (MVs) are incubated with 1,25, PKCζ is inhibited and PKCα is unaffected. These membrane-mediated effects are due to the presence of a specific membrane vitamin D receptor (mVDR) that is distinct from the classical cytosolic VDR. Studies using 1,25 analogs with reduced binding affinity for the classical VDR, confirm that rapid activation of PKC by 1,25 is not VDR dependent. The membrane-mediated effects of 1,25 are critical to the regulation of events in the extracellular matrix produced by the chondrocytes. MVs are extracellular organelles associated with maturation of the matrix, preparing it for mineralization. MV composition is under genomic control, involving VDR-mechanisms. In the matrix, no new gene expression or protein synthesis can occur, however. Differential distribution of PKC isoforms and their nongenomic regulation by 1,25 is one way for the chondrocyte to control events at sites distant from the cell. GC cells contain 1α-hydroxylase and produce 1,25; this production is regulated by 1,25, 24,25, and dexamethasone. 1,25 stimulates MMPs in the MVs, resulting in increased proteoglycan degradation in mineralization gels, and increased activation of latent transforming growth factor-beta 1 (TGF-β1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.