Abstract

The PHEX gene encodes an endopeptidase expressed in osteoblasts that inactivates an uncharacterized peptide hormone, phosphatonin, which suppresses bone mineralization as well as renal phosphate reabsorption and vitamin D bioactivation. We demonstrate that 1alpha-25-dihydroxyvitamin D (1,25(OH)2D3), the, active renal vitamin D metabolite, decreases PHEX mRNA in the rat osteoblastic cell line, UMR-106, as well as in mouse calvaria. Promoter/reporter construct analysis of the murine PHEX gene in transfected UMR-106 cells localized the repressive effect of 1,25(OH)2D3 to the -133 to -74 bp region, and gel mobility shift experiments revealed that 1,25(OH)2D3 treatment of the cells diminished the binding of a nuclear protein(s) to a stretch of 17 adenines from bp -116 to -100 in the proximal PHEX promoter. Either overexpression of a dominant-negative vitamin D receptor (VDR) or deletion of this sequence of 17 A-T base pairs abolished the repressive effect of 1,25(OH)2D3 by attenuating basal promoter activity, indicating that this region mediates the 1,25(OH)2D3 response and is involved in basal transcription. South-western blot analysis and DNA affinity purification show that an unidentified 110 kDa nuclear protein binds to the poly(A) element. Because 1,25(OH)2D3-liganded VDR neither binds to the polyadenine region of the PHEX promoter nor directly influences the association of the 110 kDa transfactor, we conclude that 1,25(OH)2D3 indirectly decreases PHEX expression via VDR-mediated repression (or modification) of this novel transactivator. Thus, we have identified a cis-element required for PHEX gene transcription that participates in negative feedback control of PHEX expression and thereby modulates the actions of phosphatonin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.