Abstract

Photo-Fenton-like catalysis allows development of novel advanced oxidation technology with promising application in wastewater treatment. In this work, carbon dots (CDs) were intercalated between CuO nanoparticles and coralloid flower-like graphitic carbon nitride (g-C3N4) to fabricate a ternary CuO/CDs/g-C3N4 hybrid for synergetic visible-light-driven photo-Fenton-like oxidation. The CuO/CDs/g-C3N4 hybrid showed remarkable degradation efficiency towards recalcitrant organic contamination, excellent tolerance to realistic environmental conditions, exceptional stability and wide universality, declaring great potential for practical applications. •OH and •O2− radicals were demonstrated to be the primary contributors in the photo-Fenton-like system. Mechanism studies reveal dual charge transfer pathways in the Z-scheme CuO/g-C3N4 heterojunction assisted by interfacial electron transmission bridges of CDs, which can simultaneously boost the reduction of Cu2+ to Cu+ in the Fenton-like cycle and accelerate the Z-scheme electron flow from CuO to g-C3N4, leading to synergistic enhancement of the catalytic performance. This work would afford a feasible strategy to develop reinforced solar energy-assisted photo-Fenton-like catalysis systems for water remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call