Abstract
Abstract Introduction Short sleep contributes to attention failure in conditions such as ADHD. Whether sleep loss affects attentional processes as a task varies in cognitive interference is unclear. We used a multi-source interference task (MSIT) in a sleep restriction paradigm in children with a range of ADHD symptoms to examine how short sleep disrupts attention in these youth. Methods Thirteen children (7F, 11.7±1.28 years) with a range of ADHD symptom severity completed a repeated-measures experiment on two consecutive nights in the laboratory: baseline (BSLN; 9.5h time-in-bed) and sleep restriction (SR; 4h time-in-bed). Each morning they took part in an fMRI session including the MSIT, in which participants respond to a series of 3-digit numbers by indicating which digit is different on no-interference (e.g., 003; correct=3) or interference (e.g., 311, correct=3) trials. Performance measures were inverse reaction time (1/RT) and accuracy. A two-way within-subject ANOVA assessed performance across interference and sleep conditions respectively. Results 1/RT showed main-effects of sleep loss (BSLN vs. SR; F(1,148)=4.01;p<0.05;η 2=0.026) and trial type (no-interference vs. interference; F(1,148)=24.7;p<0.001;η 2=0.143). Responses were slower for interference (BSLN RT: 799.3ms, SR RT: 895.8ms) than no-interference (BSLN RT: 653.2ms, SR RT: 697.4ms) trials. No interaction between interference and sleep loss was found (F(1,148)=0.11;p>0.05;η 2=0.001). Likewise, accuracy was lower (F(1,148) = 31.1, p<.001;η 2=0.174) in interference trials (73.5%) than in no-interference trials (92.2%), however with no effect of sleep loss, nor an interaction of interference and sleep loss (all p’s > .05). Conclusion These data provide evidence that partial sleep loss disrupts attention processes in children, yet these differences do not appear to depend on cognitive interference in our sample. Future analyses will examine whether ADHD symptoms distinguish individual differences, as well as analyze fMRI data to probe neural processes underlying attention control. Support K01MH09854 (to JMS); Brown University UTRA (to GDQC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have