Abstract

Quantum states are usually fragile which makes quantum computation being not as stable as classical computation. Quantum correction codes can protect quantum states but need a large number of physical qubits to code a single logic qubit. Alternatively, the protection at the hardware level has been recently developed to maintain the coherence of the quantum information by using symmetries. However, it generally has to pay the expense of increasing the complexity of the quantum devices. In this work, we show that the protection at the hardware level can be approached without increasing the complexity of the devices. The interplay between the spin-orbit coupling and the Zeeman splitting in the semiconductor allows us to tune the Josephson coupling in terms of the spin degree of freedom of Cooper pairs, the hallmark of the superconducting spintronics. This leads to the implementation of the parity-protected 0-$\pi$ superconducting qubit with only one highly transparent superconductor-semiconductor Josephson junction, which makes our proposal immune from the various fabrication imperfections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.