Abstract

Optimizing the placement of actuators and sensors for the control and monitoring tasks is one of the most important and challenging research topics in the comprehensive aircraft control systems. This paper proposes a new way to address this issue, in which Heat and Wave Equation discretized by the Finite Differential Method (FDM) were used to describe the inputs/outputs propagation mode for control systems. By utilizing a robust controller design to the models, the complicated optimal actuator and sensor placement problem can be transformed to a judgement on specific characteristics. The feedback controller was designed based on the \( H_{\infty } \) Optimal Control Principles, where the external input \( w \) is considered to be the perturbation. The optimal placement is able to be obtained at the place with the best performed controller. The simulation results show that it is reasonable to solve the actuator and sensor placement optimization problem using the proposed method and the results for the two models shared an agreeable trend. Therefore, the process of optimizing the placement of sensors and actuators for control and monitoring system could serve as a natural extension to other structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.