Abstract
Since importance of improving of Intelligent Transportation System (ITS) always follow modern trends by using new wireless communication technologies, the trend of latest research topics is focusing on Vehicular Ad Hoc Network (VANET). VANET networks play a vital role in ITS due to their increasing importance for the building of ITS. VANET is a subclass of mobile ad-hoc networks (MANET). VANET depends on wireless technologies to establish communication between moving vehicles (nodes). An appropriate and efficient routing protocol helps to successful exchange data between mobility nodes in vehicular ad-hoc networks. VANET has a lot of similar features to MANETs such as finite bandwidth, self-arrangement, self-administration, and unstable network topology. Except it has some important features of its characteristic such as very high node mobility, delay restrictions, and frequent network outages. For this reason, routing in VANET networks is much more complex than routing in MANET networks. The purpose of this study - to evaluate the performance of protocols AODV (Ad hoc On-Demand Distance Vector) and DSR (Dynamic Source Routing) and their impact on the performance of networks VANET. This paper differs in that it analyses the impact of network size at a large number of nodes, and different vehicle speeds on network performance metrics like packet delivery ratio, throughput, average delay, overhead and packet loss ratio and assessing the level of network performance at realistic mobility scenarios for the movement of vehicles in the street generated by Bonnmotion tool. Also, the simulation is carried out in NS-3 simulator to create VANET network topology and routing protocols.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.