Abstract

Previous studies with thyme ( Thymus vulgaris L.) leaf slices indicated that γ-terpinene (1,4- p-menthadiene) is the precursor of the aromatic monoterpenes p-cymene (4-isopropyl toluene) and thymol (5-methyl-2-isopropyl phenol) (Poulose, A. and Croteau, R. (1978) Arch. Biochem. Biophys. 187, 307–314). A 105,000 g supernatant obtained from an extract of young thyme leaves catalyzed the cyclization of both [1- 3H]neryl pyrophosphate and [1- 3H]geranyl pyrophosphate to γ-[3- 3H]terpinene. No evidence for the interconversion of the acyclic precursors was obtained, and isotopic dilution experiments suggested that γ-terpinene was synthesized directly from these acyclic precursors without the involvement of any free intermediates. Competing phosphatase activity in the soluble preparation was removed by ammonium sulfate fractionation followed by gel filtration on Sephadex G-150. In these fractionation steps, γ-terpinene synthetase activity co-purified with small amounts of α-thujene (1-isopropyl-4-methylbicyclo[3.1.0]-hex-3-ene) and α-terpineol ( p-menth-1-en-8-ol) synthetase activities, and these three activities could not be resolved by subsequent hydroxylapatite chromatography, anion exchange chromatography on QAE-Sephadex, or affinity chromatography on neroic acid-substituted agarose. All the enzymatic products were identified by radio chromatography and by the synthesis of derivatives followed by radio chromatography or crystallization to constant specific activity. γ-Terpinene synthetase has an apparent molecular weight of 96,000, shows a pH optimum at about 6.8, and requires Mg 2+ for catalytic activity. Mn 2+ can partially substitute for Mg 2+, but other divalent cations are ineffective. Estimated values of V and K m are 3.5 nmol/h/mg and 9 μ m, respectively, for neryl pyrophosphate, and 3.0 nmol/h/mg and 14 μ m, respectively, for geranyl pyrophosphate. Enzymic activity is inhibited by sulfhydryl-directed reagents and inorganic pyrophosphate, but not by γ-terpinene, p-cymene, or thymol. Based on the specific location of tritium in the product, a mechanism is proposed which involves the cyclization of the acyclic precursor, loss of a proton from C5 to form the Δ 4 double bond, and a 1,2-hydride shift from C4 to C8 to give γ-terpinene. A similar mechanism, but with loss of the proton from C6 and the formation of a cyclopropane ring, would yield α-thujene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.