Abstract

A soluble enzyme preparation from the leaves of fennel ( Foeniculum vulgare M.) has been shown to catalyze the cation-dependent cyclization of both geranyl pyrophosphate and neryl pyrophosphate to the bicyclic rearranged monoterpene l-endo-fenchol (R. Croteau, M. Felton, and R. Ronald, 1980 Arch. Biochem. Biophys. 200, 524–533) . To examine the possible presence of free intermediates between the acyclic precursors and fenchol, and to remove competing cyclase and pyrophosphatase activities, the soluble preparation was partially purified by ammonium sulfate fractionation followed by gel filtration on Sephadex G-150 and ion exchange chromatography on O-diethylaminoethyl-cellulose. Activities for the cyclization of geranyl pyrophosphate and neryl pyrophosphate to fenchol were coincident on Chromatographic fractionation suggesting that the same enzyme was capable of cyclizing both acyclic substrates. No interconversion of the acyclic precursors was detected. Although bornyl pyrophosphate is a free intermediate in the biosynthesis of the related bicyclic monoterpenol borneol, both protein fractionation and isotopic dilution experiments ruled out endo-fenchyl pyrophosphate as a free intermediate in fenchol biosynthesis. Similarly, while construction of the fenchane skeleton was demonstrated to involve the rearrangement of an intermediate pinane skeleton, isotopic dilution experiments ruled out both optical antipodes of α-pinene, β-pinene, cis-2-pinanol, trans-2-pinanol, and the corresponding 2-pinyl pyrophosphates as free intermediates of the enzyme-catalyzed reaction. Furthermore, exhaustive search of the enzymatic reaction products provided no evidence to suggest the involvement of any free intermediate between the acyclic precursor and fenchol. The endo-fenchol synthetase has an apparent molecular weight of 60,000, shows a pH optimum near 7.0, and requires Mn 2+ (1 m m) for catalytic activity. Co 2+ can partially substitute for Mn 2+, but other divalent cations are ineffective. The partially purified synthetase is inhibited by p-hydroxymercuribenzoate and by phenylglyoxal, and it exhibits a preference for geranyl pyrophosphate over neryl pyrophosphate as substrate. An integrated scheme is proposed for the cyclization and rearrangement catalyzed by fenchol synthetase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.