Abstract

In this study, a detailed physical, chemical, and mechanical investigation of bone substitute (β-TCP/DCPD-PHBV) was carried out. In fact, it is composed of biocompatible materials such as ceramic phosphocalcic, consisting of tricalcium phosphate (β-TCP) and dihydrated dicalcium phosphate (DCPD) and 3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) polymer having a weight fraction 40%/60%. For these analyses, diverse techniques were used, including SEM-EDS, mercury porosimeter, Fourier Transform Infrared Spectroscopy, and, finally, uniaxial compression test machine. A morphological investigation of biomaterials using MEB revealed uneven particle shape and size, as well as a rough surface with a porous and microcracked structure. In fact, this architecture promotes the development of bone within biomaterials. Compositional studies applying FTIR technology, also, revealed the existence of chemical components, comparable to those found in the mineral phase of bone (Ca2+, PO43-, and HPO42-). The following compounds prove the bioactivity of β-TCP/DCPD-PHBV. Furthermore, mechanical investigations revealed that this biomaterial has a satisfying mechanical strength (195.21 MPa), closer to bone. Nevertheless, another significant benefit of combining the two biocompatible materials used in this work is that the ductility of PHBV restricts the brittleness of β-TCP/DCPD-PHBV, compared to pure β-TCP/DCPD. The obtained results demonstrate the beneficial properties of β-TCP/DCPD-PHBV and approve the possibility of using this biomaterial as a viable material for future implantology applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call