Abstract

Plants have been used for medicine from time immemorial because they have fitted the immediate personal need and are easily accessible. These are inexpensive too. In the recent past there has been a tremendous increase in the use of plant based health products in developing as well as developed countries, resulting in an exponential growth of herbal products globally. Herbal medicines have a strong traditional or conceptual base and the potential to be useful as drugs in terms of safety and effectiveness leads for treating different diseases. There are not much chemical investigations on this plant. Ceriops tagal Linn. is a mangrove plant. The leaves of the plant were air dried and dried leaves were used for the detailed chemical and biological investigation. The leaves were extracted with ethanol and the ethanol extract showed promising antidiabetic activity (PTPase inhibitory activity). This prompted us to take up detailed chemical investigation on this plant. We have isolated 12 chemical molecules from the bioassay guided fraction for the location of biological activity. Four molecules [(Stearic acid (94.2%) Betulin (94.4%) (β-hydroxy betulinic acid 90.5%) and (ursolic acid 91.6%)] showed promising PTPase activity at 100 μg/ml.

Highlights

  • In the present communication we have isolated and characterized 12 chemical compounds from the leaves of this plant and antidiabetic activity was evaluated of these compounds

  • In the present study we reports the bioassay guided isolation and characterization of 12 compounds from the leaves of the Ceriops tagal

  • All these 12 compounds reported were isolated from the active hexane-chloroform fractions of the leaves as Palmitic acid, Stearic acid, Lupeol-3-palmitate, pacetyl coumaryl ester of lupeol, β-Sitosterol, Lupeol, 3-epibetulinic acid, Betulin, 3β-hydroxy betulinic acid, Ursolic acid, Oleanolic acid, β-Sitosterol-β-D-glucoside

Read more

Summary

Introduction

In the present communication we have isolated and characterized 12 chemical compounds from the leaves of this plant and antidiabetic activity was evaluated of these compounds. The EIMS spectrum displayed a molecular ion peak at m/z 665 [M+H]+ corresponding to the molecular formula C46H80O2.On the basis of spectral analysis and Co-TLC with authentic samples. Its identity was confirmed by Co-TLC with authentic sample and comparison of spectral data with those in literature [7].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.