Abstract

Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar aggregates of alpha-synuclein in characteristic inclusions known as "Lewy bodies". As mutations altering alpha-synuclein structure or increasing alpha-synuclein expression level can cause familial forms of PD or related Lewy body disorders, alpha-synuclein is believed to play a central role in the process of neuron toxicity, degeneration and death in "synucleinopathies". beta-synuclein is closely related to alpha-synuclein and has been shown to inhibit alpha-synuclein aggregation and ameliorate alpha-synuclein neurotoxicity. We generated beta-synuclein transgenic mice and observed a marked reduction in alpha-synuclein protein expression in the cortex of mice over-expressing beta-synuclein. This reduction in alpha-synuclein protein expression was not accompanied by decreases in alpha-synuclein mRNA expression. Using the prion protein promoter alpha-synuclein A53T mouse model of PD, we demonstrated that over-expression of beta-synuclein could retard the progression of impaired motor performance, reduce alpha-synuclein aggregation and extend survival in doubly transgenic mice. We attributed the amelioration of alpha-synuclein neurotoxicity in such bigenic mice to the ability of beta-synuclein to reduce alpha-synuclein protein expression based upon I(125) autoradiography quantification. Our findings indicate that increased expression of beta-synuclein protein results in a reduction of alpha-synuclein protein expression. As increased expression of alpha-synuclein may cause or contribute to PD pathogenesis in sporadic and familial forms of disease, this observation has important implications for the development of therapies for PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.