Abstract

Common practice of Soil Water Assessment Tool (SWAT) model validation is to use a single variable (i.e., streamlfow) to calibrate SWAT model due to the paucity of actual hydrological measurement data in Korea. This approach, however, often causes errors in the simulated results because of numerous sources of uncertainty and complexity of SWAT model. We employed multi-variables (i.e., streamflow, evapotranspiration, and soil moisture), which were measured at mixed forest in Seolmacheon catchment (), in order to assess the performance and reduce the uncertainties of SWAT model output. Meteorological and surface topographical data of the catchment were obtained as basic input variables and SWAT model was calibrated using daily data of streamflow (Jan. - Dec.), evapotranspiration (Sep. - Dec.), and soil moisture (Jun. - Dec.) collected in 2007. The model performance was assessed by comparing its results with the observation (i.e., streamflow of 2003 to 2008 and evapotranspiration and soil moisture of 2008). When the multi-variable measurements were used to calibrate the SWAT model, the model results showed better agreement with the measurements compared to those using a single variable measurement by showing increases in coefficient of determination () from 0.72 to 0.76 for streamflow, from 0.49 to 0.59 for soil moisture, and from 0.52 to 0.59 for evapotranspiration. The findings highlight the importance of reliable and accurate collective observation data for improving performance of SWAT model and promote its facilitation for estimating more realistic hydrological cycles at catchment scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call