Abstract
영상은 잡음센서이나 채널 전송에러에 의해 생기는 임펄스 잡음에 의해 자주 오염된다. 본 논문은 영상에서 이런 임펄스 잡음을 제거하는 방법에 대해 논의하고자 한다. 제안된 잡음제거는 SVM(Support Vector Machine)과 개선된 Adaptive Median 필터에 의해 이루어진다. SVM에 의해 영상에서 잡음픽셀여부를 검출하고 검출된 잡음픽셀은 개선된 Adaptive Median 필터에 의해 새로운 픽셀값으로 대체한다. 제안된 방법의 성능을 평가하기 위해 영상 실험을 통하여 salt-and-pepper 임펄스 잡음과 random-valued 임펄스 잡음을 고려하여 기존의 잡음제거 방법들과 정성적이고 MAE, PSNR를 통한 정량적인 비교를 하였다. 실험결과 제안된 방법은 잡음 제거와 미세한 부분에 대한 보존력이 뛰어나고 특히, 많이 오염된 영상에 대해서도 상당한 잡음제거 성능을 보였다. Images are often corrupted by impulse noise due to a noise sensor or channel transmission errors. The filter based on SVM(Support Vector Machine) and the improved adaptive median filtering is proposed to preserve image details while suppressing impulse noise for image restoration. Our approach uses an SVM impulse detector to judge whether the input pixel is noise. If a pixel is detected as a noisy pixel, the improved adaptive median filter is used to replace it. To demonstrate the performance of the proposed filter, extensive simulation experiments have been conducted under both salt-and-pepper and random-valued impulse noise models to compare our method with many other well known filters in the qualitative measure and quantitative measures such as PSNR and MAE. Experimental results indicate that the proposed filter performs significantly better than many other existing filters.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have