Abstract

The relevance of the investigation is caused by the need for rational use of natural hydrocarbon gases, containing methane as the main component. Currently, plenty of these gases are burned in flares at oil production sites, that does great damage to the environment in the oil-producing regions of our country. The most promising process that allows obtaining valuable chemical products is the non-oxidative methane conversion into aromatic hydrocarbons over zeolite catalysts modified with transition metal ions. The Mo/ZSM-5 catalysts have high activity in this process. These catalysts are obtained both by impregnation and solid-phase synthesis. Development of the method of preparation of Mo/ZSM-5 catalysts using binder is of great importance for the industrial technology of processing gaseous hydrocarbons. The aim of the work is to study the effect of concentration and method of introducing a binder on physicochemical and catalytic properties of the Mo/ZSM-5 catalyst in non-oxidative methane conversion. Methods of investigation: IR spectroscopy, low-temperature adsorption of nitrogen, temperature-programmed desorption of ammonia (TPD-NH3), gas chromatography. Results. The Mo-containing catalyst based on ZSM-5 zeolite and nanosized molybdenum powder was prepared via solid-phase synthesis. The authors have studied the effect of a binder on physicochemical properties and activity of the Mo/ZSM-5 catalyst in non-oxidative conversion of methane into aromatic hydrocarbons. It was ascertained that the addition of a binder to the Mo/ZSM-5 catalyst results in a change in its texture and acid characteristics. It is shown that the activity of the Mo-containing zeolite during the non-oxidative conversion of methane into aromatic hydrocarbons is determined by the concentration of the binder in the catalyst and does not depend on the method of its introduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call