Abstract
Using a scalarization method, approximate optimality conditions of a multiobjective nonconvex optimization problem which has an infinite number of constraints are established. Approximate duality theorems for mixed duality are given. Results on approximate duality in Wolfe type and Mond-Weir type are also derived. Approximate saddle point theorems of an approximate vector Lagrangian function are investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have