Abstract

Magnesium alloys are considered promising materials for the production of bioresorbable implants. Their main disadvantages are low strength and corrosion resistance in biological environment. In the work, the authors studied the effect of severe plastic deformation using the equal channel angular pressing (ECAP) method on the structure, mechanical properties, and corrosion resistance of the Mg–8.6Zn–1.2Zr magnesium alloy. It was identified that one ECAP cycle at 400 °C leads to a substantial hardening of the Mg–8.6Zn–1.2Zr alloy by ~10 %, up to 330 MPa. Structural studies showed that dynamic recrystallisation plays a significant role in the structure transformation. ECAP leads to the formation of a bimodal structure with large deformed grains with an average transverse size of 20±4 µm and recrystallised grains with an average transverse size of 6±2 µm. It was found that with a decrease in the strain temperature up to 250 °С, the process of deformation-induced decay of the supersaturated solid solution takes place. Electrical conductivity of a sample after ECAP at 400 °C amounted 29±2 % according to the International Annealed Copper Standard (IACS), while second ECAP cycles lead to an increase in the electrical conductivity up to 32±2 % IACS. Using the electrochemical corrosion method, the authors found that one ECAP cycle at 400 °C leads to a slight decrease in the corrosion resistance of the alloy under study compared to the initial state. The study showed that the corrosion current increases from 24 to 32 µA/cm2, while the subsequent ECAP cycle at 250 °С increases the corrosion current more than twice (up to 57 µA/cm2).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call