Abstract

This article presents the results of mathematical modeling of the stress-strain state of the finite element analysis of the justification for the use of Humana Dental implants with an innovative surface microstructure and thread design parameters during dental implantation. As a result of the study, after placing the implants in the created three-dimensional model, consisting of trabecular and cortical bones, it was revealed that the angle of implant placement significantly affects the distribution of stress in the bone. The rough, well-structured surface improves the contact of the implant with the bone. The stress distribution on dental implants with different geometry and thread design was revealed, and the most effective thread parameters for uniform load distribution were determined.
 Aim. Substantiation of the use of Humana Dental implants with innovative macro-microstructure of the surface and thread design parameters during dental implantation in various clinical situations.
 Material and methods. Samples of BioSink and Vega implants from Humana Dental were studied to assess the stress distribution by mathematical modeling of the stress-strain state in the cortical and spongy bone surrounding two models of implants with a diameter of 4.2 mm and a length of 11.5 mm, as well as with a different thread shape design. The implants were installed in the created three-dimensional model strictly vertically and at an angle of 30°. Geometric models were built in CAD Catia V5, the calculation was carried out in the software package Ansys R19.2.
 Resalts. As a result of the study, it was revealed that in all cases the maximum concentration of stresses falls on the cortical layer of bone near contact with the implant, and in the spongy bone with vertical installation, maximum stresses in all cases are reached near the lower part of the implant. The peak voltage in the cortical bone was highest in the threaded part of the implants. When changing the angle of installation of the implant, the maximum voltages can increase many times, but when changing the thread pitch, only small fluctuations in voltages are noted, which do not fit into any trend. In the peri-implant region, the cortical bone showed a higher concentration of tension than the spongy bone.
 Conclusions. The use of finite element analysis made it possible to identify the stress distribution on dental implants with different thread geometries and designs and to determine the most effective thread parameters for uniform load distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call