Abstract

Glycosidases are present both in sperm and eggs in vertebrates and have been associated with different fertilization steps as gamete binding, egg coat penetration, and polyspermy prevention. In this manuscript, we have analyzed the activity of different glycosidases of Xenopus laevis eggs. The main activity corresponded to N-acetyl-β-D-glucosaminidase (Hex), which was reported to participate both in gamete binding and polyspermy prevention among phylogenetically distant animals. We have raised homologous antibodies against a recombinant N-terminal fragment of a X. laevis Hex, and characterized egg's Hex both by Western blot and immunohistochemical assays. Noteworthy, Hex was mainly localized to the cortex of animal hemisphere of full-grown oocytes and oviposited eggs, and remained unaltered after fertilization. Hex is constituted by different pair arrangements of two subunits (α and β), giving rise to three possible Hex isoforms: A (αβ), B (ββ), and S (αα). However, no information was available regarding molecular identity of Hex in amphibians. We present for the first time the primary sequences of two isoforms of X. laevis Hex. Interestingly, our results suggest that α- and β-like subunits that constitute Hex isoforms could be synthesized from a same gene in Xenopus, by alternative exon use. This finding denotes an evolutionary divergence with mammals, where α and β Hex subunits are synthesized from different genes on different chromosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.