Abstract

Using state-of-the-art first-principles calculations, we propose a new two-dimensional (2D) carbon allotrope constructed by polymerizing the carbon skeletons of s-indacenes, named PSI (ψ)-graphene. We show that ψ-graphene has the lowest energy among all hitherto reported 2D allotropes of carbon composed of 5-6-7 carbon rings and is dynamically and thermally stable. This structure is metallic with robust metallicity against external strain. In addition, we find that the adsorption of Li atoms on ψ-graphene is exothermic, and the diffusion energy barrier is low and comparable to that of graphene. Furthermore, ψ-graphene can achieve a maximum Li storage capacity equivalent to that of LiC6, suggesting its potential as an anode material for Li-ion batteries (LIBs). In addition, we show that increasing the number of hexagons in this structure can enhance the thermodynamic stability of the sheet while maintaining its metallicity. This study provides new insights into the design of new metallic carbon for nanostructured anode materials in the next generation of LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.