Abstract

Superstrong static electric fields could deform Coulomb barriers between α clusters and daughter nuclei, and bring up the possibility of speeding up α decays. We adopt a simplified model for the spherical α emitter 212Po and study its responses to superstrong static electric fields. We find that superstrong electric fields with field strengths |E| ∼ 0.1 MV/fm could turn the angular distribution of α emissions from isotropic to strongly anisotropic, and speed up α decays by more than one order of magnitude. We also study the influences of superstrong electric fields along the Po isotope chains, and discuss the implications of our studies on α decays in superstrong monochromatic laser fields. The study here might be helpful for future theoretical studies of α decay in realistic superstrong laser fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.