Abstract

Beta-cyclodextrin (β-CD) stabilized cerium oxide nanoparticles (β-CD@CeO2 NPs) were synthesized through a hydrothermal route. The electronic properties, surface functional group, surface composition, size, and morphologies of the as-synthesized β-CD@CeO2 NPs were characterized using UV-visible spectroscopy, FTIR analysis, high resolution X-ray photoelectron spectroscopy (HRXPS), high resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscopy (FESEM). The pH-dependent variation of the ζ-potential of β-CD@CeO2 NPs and the catalytic activity of the NPs for the hydrolysis of paraoxon were investigated. The observed pseudo-first-order rate constant (kobs) for the hydrolysis of paraoxon is increased with increasing pH and the ζ-potential of β-CD@CeO2 NPs. The kinetics and mechanism of hydrolysis of paraoxon in the aqueous and cationic micellar media have been discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call