Abstract

이온 교환막은 전기투석, 확산투석, Redox flow 전지, 연료전지 등 다양하고 넓은 분야에서 사용되고 있다. 초음파를 이용하여 만들어진 PVC 양이온 교환막을 시간을 변화시켜 가면서 술폰화 반응에 의해 제조하였다. 술폰화제로 황산을 사용하였으며, 술폰화 PVC 양이온 교환막의 기본구조와 특성을 FT-IR, EDX, Water uptake, 이온교환용량(IEC), 전기저항(ER), 전도도, 이온수송수 및 표면 morphology를 SEM 분석하였다. FT-IR 스펙트럼 분석결과 술폰화 PVC 양이온 교환막에 술폰산기가 도입되었음을 확인하였으며 멤브레인의 Water uptake, IEC, 전기 저항 및 ion transport number의 최대값은 각각 40.2%, 0.87 meq/g, <TEX>$35.2{\Omega}{\cdot}cm^2$</TEX> 및 0.88이었다. Ion exchange membrane is widely used in various fields such as electro dialysis, diffusion dialysis, redox flow battery, fuel cell. PVC cation exchange membrane using ultrasonic modification was prepared by sulfonation reaction in various sulfonation times. Sulfuric acid was used as a sulfonating agent with ultrasonic condition. We've characterized basic structure of sulfonated PVC cation exchange membrane by FT-IR, EDX, water uptake, ion exchange capacity (IEC), electrical resistance (ER), conductivity, ion transport number and surface morphology (SEM). The presence of sulfonic groups in the sulfonated PVC cation exchange membrane was confirmed by FT-IR. The maximum values of water uptake, IEC, electrical resistance and ion transport number were 40.2%, 0.87 meq/g, <TEX>$35.2{\Omega}{\cdot}cm^2$</TEX> and 0.88, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.