Abstract
چکیده سیل یکی از پدیده های ویرانگر طبیعی است که پیش بینی آن از اهمیت بالایی برخوردار است. برآورد بارش-روانآب و سیل، بهدلیل تأثیرگذاری عوامل مختلف، دشوار است. تا کنون روشهای مختلفی برای تحلیل این پدیده ها پیشنهاد شده است. هدف این پژوهش مقایسه کارآمدی شبکههای عصبی مصنوعی (ANNs) در شبیهسازی فرآیند بارش ـ روانآب با نتایج مدل HEC-HMS است. به این منظور حوزه کارده واقع در شمال شرقی خراسان برگزیده شد و باراننمودهای چندین پیشامد بارندگی و آبنمودهای روانآب آنها (مجموع450 داده مربوط به 30 پیشامد گزینش شده) مبنای کار قرار گرفت. سپس شبکه عصبی مصنوعی با الگوریتم پسپراکنش و استفاده از تابع تبدیلS-شکل آموزش داده شد. معیار گزینش پارامترهای شبکه در مرحله آموزش، تولید کمترین مقدار ریشه میانگین مربعات خطا (RMSE) در خروجی های آن بود. مدل HMS به روش پیشنهادی SCS اجرا گردید. برای ارزیابی کارایی ANN، داده های شبیه سازی شده و مشاهده ای مربوط به کل دبی و حجم روانآب، دبیهای اوج و زمان های اوج مقایسه شدند. نتایج نشان داد که بر پایه قانون آموزش دلتا، شبکه پرسپترون چندلایه (MLP) با تعداد 29 نرون در تنها لایه میانی (پنهان)، فرآیند بارش ـ روانآب را با دقت خوبی شبیهسازی می نماید. ضریب همبستگی کل دادههای دبی و حجم روانآب شبیه سازی شده و مشاهده ای، به ترتیب 98/0 و 99/0 به دست آمد. ANN اندازه و زمان دبیهای اوج را نیز به خوبی (به ترتیب، 98/0 و 83/0 = r) برآورد کرد. با بررسی عملکرد مدل HMS، ضریب همبستگی کل دادههای دبی و حجم روانآب 82/0 و 98/0 به دست آمد. همچنین ضریب همبستگی مربوط به اندازه و زمان دبیهای اوج روانآب برآورد شده با مدل به ترتیب 97/0 و 70/0 برآورد شد. در آزمون t با سطح اعتماد 99درصد، اختلاف معنی داری میان اندازه های مشاهده ای و شبیه سازی شده مربوط به همه پارامترهای مورد نظر دیده نشد. در نتیجه، گرچه تفاوت معنی داری میان دو روش یافت نشد، ولی مقایسه عملکرد شبکه و مدل به کار رفته نشان می دهد که در تمام پارامترها، دقت ANN بیشتر از مدل HMS بوده است. واژههای کلیدی: شبیهسازی، مدل هیدرولوژیکی، بارش _ روانآب، شبکه عصبی مصنوعی، مدل HEC-HMS، حوزه کارده
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have