Abstract
Using the data of qualitative X-ray phase analysis, it was shown that in a wide concentration range at 1223 K compounds based on silver niobate are formed in the condition of the heterovalent substitution of tungsten(VI) ions for niobium(V) ions. These compounds are isomorphic to a perovskite-type structure. Microprobe analysis data allows to determine the homogeneity of the analyzed samples and the correspondence of their experimental compositions to the theoretical ones for the formula Ag1-xNb1-xWxO3. Using the data of X-ray diffraction analysis (Rietveld method) in the Crystallography Data Analysis Software – GSAS, the crystal structure of the obtained compounds was refined. The surface morphology of samples having been obtained at 1373 K was investigated by scanning electron microscopy (SEM). It was shown that with an increase of Nb5+ to W6+ substitution degree for Ag1-xNb1-xWxO3 ceramic samples in the range of the (0.2≤x≤0.8) molar ratio, the average particle size for the studied compositions grows from 1.3 to 5.2 μm, respectively. For the obtained ceramic compounds based on silver niobate with a perovskite-like structure (tetragonal distortion), the temperature-frequency dependences of dielectric parameters in the range 300-900 K were studied. It was found that samples slowly cooled from 1373 K are characterized by low values of (ε ~ 10) and loss (tgδ ~ 0.004 at f = 1 kHz) at room temperature. The ceramics obtained are characterized by relatively high values of dielectric permittivity ε at low frequencies and/or high temperatures. The dielectric parameters of the obtained ceramics are similar to the characteristics of so-called "colossal" dielectric constant materials. The revealed features of the dielectric characteristics of quenched ceramics apparently result from Maxwell-Wagner relaxation at intercrystalline contacts.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have