Abstract

The purpose of our research is to efficiently deform a 3D models which is composed of a triangular mesh and a skeleton. We designed a novel inverse kinematics (IK) solver that calculates the updated positions of mesh vertices with fewer computing operations. Through our user interface, one or more markers are selected on the surface of the model and their target positions are set, then the system updates the positions of surface vertices to construct a deformed model. The IK solving process for updating vertex positions includes many computations for obtaining transformations of the markers, their affecting joints, and their parent joints. Many of these computations are often redundant. We precompute those redundant terms in advance so that the 3-nested loop computation structure was improved to a 2-nested loop structure, and thus the computation time for a deformation is greatly reduced. This novel IK solver can be adopted for efficient performance in various research fields, such as handling 3D models implemented by LBS method, or object tracking without any markers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call