Abstract
A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution, Unlike conventional shell theories, which are mathematically two-dimensional (2-D). the present method is based upon the 3-D dynamic equations of elasticity. Displacement components <TEX>$u_{r},\;u_{z},\;and\;u_{\theta}$</TEX> in the radial, axial, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in , and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the conical shells are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of theconical shells. Novel numerical results are presented for thick, complete conical shells of revolution based upon the 3-D theory. Comparisons are also made between the frequencies from the present 3-D Ritz method and a 2-D thin shell theory.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have