Abstract
In this paper, within the framework of the C (N) D - formulation of the recovery problem, the problem of optimal recovery of functions from anisotropic Sobolev classes in a power-logarithmic scale in the metric $L^{q} \, (2\le q\le \infty )$ is solved. Namely, in the case when the values $l_{N}^{\eqref{GrindEQ__1_}} (f),...,l_{N}^{(N)} (f)$ of linear functionals $l_{N}^{\eqref{GrindEQ__1_}} ,...,l_{N}^{(N)} $ defined on the considered functional class are used as numerical information about a function, firstly, the exact order of the recovery error is established, and secondly, a specific computing unit $\bar{\varphi }_{N} \left(\bar{l}_{N}^{(1)} (f),...,\bar{l}_{N}^{(N)} (f);\, \cdot \right)$ is indicated that implements the established exact order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of L.N. Gumilyov Eurasian National University. Mathematics. Computer Science. Mechanics Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.