Abstract

As environmental vibration requirements on precision equipment become more stringent, use of pneumatic isolators has become more popular and their performance is subsequently required to be further improved. Performance of passive pneumatic isolators is related to various design parameters in a complicated manner and, hence, is very limited especially in low frequency range by chamber volume. In this study, transmissibility behavior of the pneumatic isolators depending on frequency and dynamic amplitude are presented. Then, an active control technique, time delay control, which is adequate for a low frequency nonlinear system, is applied. A procedure of applying the time delay control law to a pneumatic isolator is presented and it's effectiveness in the transmissibility performance is shown. Comparison between passive and active pneumatic isolators is made based on simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call