Abstract
In this Problems of the type presented in this article describe the operation of a harmonic oscillator under the influence of external forces, which is fixed in the extreme left position and has some mechanism at right one, that controls the displacement according to the feedback from devices measuring the displacements along parts of the oscillator. Above in the introduction, references are given to some papers in which integral boundary conditions for differential equations were considered. The paper is organized as follows: the boundary value problem considered in the paper is reduced to an equivalent integral equation, and the existence of a positive solution of the integral equation is established using the fixed point principle of an operator defined on a certain cone. An a priori estimate of such a solution is obtained, which subsequently participates in the proof of the uniqueness of a positive solution. Sufficient conditions for uniqueness follow from the uniqueness principle for u0 convex operators on a cone. At the end of the work, an example is given that demonstrates the results obtained.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.