Abstract

A topological space X is locally weakly separable [3] at a point x∈X if x has a weakly separable neighbourhood. A topological space X is locally weakly separable if X is locally weakly separable at every point x∈X. The notion of local weak separability can be generalized for any cardinal τ ≥ℵ0 . A topological space X is locally weakly τ-dense at a point x∈X if τ is the smallest cardinal number such that x has a weak τ-dense neighborhood in X [4]. The local weak density at a point x is denoted as lwd(x). The local weak density of a topological space X is defined in following way: lwd ( X ) = sup{ lwd ( x) : x∈ X } . A topological space X is locally τ-dense at a point x∈X if τ is the smallest cardinal number such that x has a τ-dense neighborhood in X [4]. The local density at a point x is denoted as ld(x). The local density of a topological space X is defined in following way: ld ( X ) = sup{ ld ( x) : x∈ X } . It is known that for any topological space we have ld(X ) ≤ d(X ) . In this paper, we study questions of the local weak τ-density of topological spaces and establish sufficient conditions for the preservation of the property of a local weak τ-density of subsets of topological spaces. It is proved that a subset of a locally τ-dense space is also locally weakly τ-dense if it satisfies at least one of the following conditions: (a) the subset is open in the space; (b) the subset is everywhere dense in space; (c) the subset is canonically closed in space. A proof is given that the sum, intersection, and product of locally weakly τ-dense spaces are also locally weakly τ-dense spaces. And also questions of local τ-density and local weak τ-density are considered in locally compact spaces. It is proved that these two concepts coincide in locally compact spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.