Abstract

AbstractImbalanced class distribution is a challenging problem in many real-life classification problems. Existing synthetic oversampling do suffer from the curse of dimensionality because they rely heavily on Euclidean distance. This paper proposed a new method, called Minority Oversampling Technique based on Local Densities in Low-Dimensional Space (or MOT2LD in short). MOT2LD first maps each training sample into a low-dimensional space, and makes clustering of their low-dimensional representations. It then assigns weight to each minority sample as the product of two quantities: local minority density and local majority count, indicating its importance of sampling. The synthetic minority class samples are generated inside some minority cluster. MOT2LD has been evaluated on 15 real-world data sets. The experimental results have shown that our method outperforms some other existing methods including SMOTE, Borderline-SMOTE, ADASYN, and MWMOTE, in terms of G-mean and F-measure.KeywordsImbalanced learningOversampling methodLocal densitiesDimensionality reduction

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.