Abstract

The paper considers processes of fatigue life of materials and structures in the exploitation conditions characterized by multiparametric nonstationary thermal-mechanical effects In the framework of mechanics of damaged media, a mathematical model is developed that describes processes of thermal-plastic deformation and fatigue damage accumulation in materials with degradation according to low- and high-cycle fatigue mechanisms (accounting for their interaction). The model consists of three interconnected parts: relations determining cyclic thermal-plastic behavior of a material, accounting for its dependence on the failure process; equations describing kinetics of fatigue damage accumulation; a strength criterion of the damaged material. The version of the defining relations of thermal plasticity is based on the notion of the yield surface and the principle of orthogonality of the plastic strain rate vector to the yield surface at the loading point and reflects the main effects of the process of cyclic plastic deformation of the material for arbitrarily complex trajectories of combined thermal-mechanical loading. The version of kinetic equations of fatigue damage accumulation is based on introducing a scalar parameter of damage degree and on energy-based principles, and takes into account the main effects of the nucleation, growth and merging of microdefects under arbitrarily complex loading regimes. A generalized form of an evolutionary equation of fatigue damage accumulation in low-cycle and high-cycle fatigue regions is introduced. The condition when the damage degree reaches its critical value is taken as the strength criterion of the damaged material. To assess the reliability and the scope of applicability of the developed defining relations of mechanics of damaged media, processes of thermal-plastic deformation and fatigue damage accumulation have been numerically analyzed, and the numerical results obtained have been compared with the data of full-scale experiments for a particular applied problem. The effect of the dropping frequency of a distillate on thermal cyclic fatigue life of the material of a heated surface of a tube has been numerically analyzed. The computational results for the fatigue damage accumulation processes under thermal pulsed loading are compared with experimental data. It is shown that the developed model describes both qualitatively and, accurately enough for engineering purposes, quantitatively the experimental data and can be effectively used for evaluating thermal-cyclic fatigue life of structures working in the conditions of multiaxial non-proportional regimes of combined thermal-mechanical loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call