Abstract
The service life of concrete structures exposed to a marine environment can be extended by controlling the amount of chloride in cover concrete. Patching is one of the appropriate maintenance techniques for chloride contamination. Chloride-contaminated cover concrete is removed and replaced with sound one. It can provide less risk of corrosion of steel, so that the structure can be maintained for required service life. In this study, a quantitative assessment of the service life subjected to the chloride attack is proposed to determine the effective repair options such as repair depth, repair material and timing of repair. The Crank-Nicolson based finite difference formulation from Fick`s second law is proposed to predict the profiles of chloride ion in a repaired concrete structure, considering ingress of chloride from outer and redistribution of residual chloride from the substrate concrete. Therefore, the repair application times and maintenance cost for the target service life can be estimated. Finally, the numerical examples are presented to ensure its applicability.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have