Abstract

Composite plating improves functionalities of wear resistance, corrosion resistance, lubricity, etc. through co-deposition with suitable particles. For this study, reactive metallic particles were introduced intentionally as a dispersant. Heat treatment was used to form an alloy with a plated matrix. Composite plating films were formed using electroless Ni-P plating with Nb powder of two types as dispersants: nanopowder (ca. 300 nm diameter) and micropowder (ca. 50 μm diameter). The composite plating film was alloyed using heat treatment at 800°C for 1 hour under vacuum conditions. X-ray diffraction (XRD) analysis confirmed that the proportion of alloy to reactive composite film with nanopowder was much larger than that with micropowder. Results of X-ray photoelectron spectroscopy (XPS) analyses suggest that a selective Nb oxide was formed on the composite film surface when using Nb nanopowder. On the other hand, almost no Nb micropowder was changed to alloy or oxide in the composite films. Using nanopowder, much of the composite plating film formed reactive composite plating film alloy during heat treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call