Abstract

One of the rational ways of creating low-emission combustion chambers is the organization of low-temperature lean combustion with external heating of the components before they are fed into the combustion chamber. When organizing lowtemperature lean combustion with large excess air ratios, problems may arise with ensuring a stable position of the flame front. Combustion stability to a large extent depends on the ratio of the average flow rate and the rate of turbulent combustion. The rate of turbulent combustion depends on the composition, pressure and temperature of the components supply and the degree of turbulence in the combustion chamber. The average flow rate depends on the excess air ratio (oxidizer and fuel consumption) and the geometric dimensions of the chamber. Earlier it was shown that when developing a low-emission combustion chamber with low-temperature lean combustion, it is advantageous to use the relative flow rate as a generalized characteristic of the intra-chamber process, which takes into account the consumption, geometric and thermodynamic parameters in the combustion chamber. This work is devoted to the analysis of stable combustion of a fuel composition natural gas + air based on the experimental data available in the public domain by the authors from the University of Michigan (USA). With the help of the methods developed by the authors, the experimental data on the limiting feed rates of the components into the atmospheric burner were processed. The limiting flow rates of air and natural gas, the limiting values of the excess air ratio, the longitudinal values of the speed of the fuel-air mixture and the limiting values of the relative flow rate are obtained and analyzed. Areas of stable combustion by the listed parameters at different degrees of air swirl are graphically presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.